Number of channels (#) | 8 |
Technology Family | AC |
Supply voltage (Min) (V) | 2 |
Supply voltage (Max) (V) | 6 |
Input type | Standard CMOS |
Output type | 3-State |
Clock Frequency (Max) (MHz) | 100 |
IOL (Max) (mA) | 24 |
IOH (Max) (mA) | -24 |
ICC (Max) (uA) | 40 |
Features | Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode, Flow-through pinout |
- 2-V to 6-V VCC Operation
- Inputs Accept Voltages to 6 V
- Max tpd of 9 ns at 5 V
- 3-State Outputs Drive Bus Lines Directly
These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight latches are D-type transparent latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D Inputs.
A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines in a bus-organized system without need for interface or pullup components.
OE\ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.