如何有效地测量SiC MOSFET

电子说

1.2w人已加入

描述

碳化硅二极管多为肖特基二极管。第一个商用 SiC 肖特基二极管是在 10 多年前推出的。从那时起,这些设备已被整合到许多电源系统中。二极管升级为 SiC 功率开关,例如 JFET、BJT 和 MOSFET。目前可提供击穿电压为 600 至 1,700 V、额定电流为 1 至 60 A 的 SiC 开关。这里的重点是如何有效地测量 SiC MOSFET。

MOSFET图 1:第一款商用 SiC MOSEFT,CMF20120D

 

SiC 二极管
最初,可以使用简单的二极管,但随着技术进步,生产升级的 JFET、MOSFET 和双极晶体管。SiC 肖特基二极管具有更高的开关性能、效率、功率密度和更低的系统成本。这些二极管提供零反向恢复、低正向压降、电流稳定性、高浪涌电压能力和正温度系数。

新二极管面向各种应用的电源转换器设计人员,包括光伏太阳能逆变器、电动汽车 (EV) 充电器、电源和汽车应用。与硅相比,它具有更低的漏电流和更高的掺杂。一个重要的特性是高温下的行为:随着温度的升高,硅的直接特性会发生很大变化。碳化硅是一种非常坚固和可靠的材料。然而,在 SiC 的情况下,它仍然局限在小范围内。

让我们来看看 SiC 二极管
SiC 二极管原型 待测试的 SiC 二极管示例是 SCS205KG 模型,它是 Rohm 的 SiC 肖特基势垒二极管(图 2)。以下是它的一些最重要的功能:

  • 电压:1,200 伏
  • 如果:5 A(+150°C 时)
  • 浪涌非重复正向电流:23 A(PW = 10 ms 正弦波,Tj = 25°C)
  • 浪涌非重复正向电流:17 A(PW = 10 ms 正弦波,Tj = 150°C)
  • 浪涌非重复正向电流:80 A(PW = 10 µs 平方,Tj = 25°C)
  • 总功耗:88 W
  • 结温:175°C
  • TO-220AC 封装
MOSFET图 2:Rohm 的 SCS205KG SiC 二极管

 

这是一个非常强大的组件,具有较短的恢复时间和高速开关。其官方 SPICE 模型允许在任何条件下对组件进行仿真。

* SCS205KG
* SiC 肖特基势垒二极管型号
* 1200V 5A
* ROHM 生产的型号
* 版权所有
* 日期:2015/11/16
*****************AC
.SUBCKT SCS205KG 1 2
.PARAM T0=25
.FUNC R1(I) {40.48m*I*EXP((TEMP-T0)/155.8)}
.FUNC I1(V) {2.102f*(EXP(V/0.02760/EXP((TEMP) -T0)/405.3))-1)*
+ EXP((TEMP-T0)/7.850*EXP((TEMP-T0)/-601.3))}
.FUNC I2(V) {TANH(V/0.1)*( 710.4p*EXP(-V/198.3)*EXP((TEMP-T0)/54.40)+
+ 26.02f*EXP(-V/63.22/EXP((TEMP-T0)/178.9))*
+ EXP((TEMP -T0)/8.493*EXP((TEMP-T0)/-600)))}
V1 1 3 0
E1 3 4 VALUE={R1(MIN(MAX(I(V1)/0.5,-500k),500k)) }
V2 4 5 0
C1 5 2 0.5p
G1 4 2 值={0.5*(I1(MIN(MAX(V(4,2),-5k),5))+I2(MIN(MAX(V(4,2),-5k),5)) )+
+ I(V2)*(913.9*(MAX(V(4,2),0.5607)-0.5607)+
+ 727.2*(1-360.9*TANH(MIN(V(4,2),0.5607)/360.9) )/1.121)**-0.4987)}
R1 4 2 1T
.ENDS SCS205KG

正向电压
第一个测量操作涉及 SiC 二极管的正向电压。如图 3所示,这是测试的简单电路,它的 3D 表示,以及关于不同工作温度下正向电压的组件数据表的摘录。

MOSFET图 3:测试 SiC 二极管正向电压的测试示意图

 

测试接线图包含串联的肖特基 SCS205KG SiC 二极管,其电阻约为 6.7 Ω,其大小允许 5 A 的电流通过电路。电源电压设置为 36 V。为了更好地优化耗散和散热,我们使用了 10 个并联的 67 Ω 电阻器,以模拟单个 6.7 Ω 电阻器。每个电阻的功率必须至少为 20 W。肖特基二极管 SCS205KG 的数据表确定了在各种工作温度下组件两端的以下电压:

  • 如果 = 5 A,Tj = 25°C:1.4 V
  • 如果 = 5 A,Tj = 150°C:1.8 V
  • 如果 = 5 A,Tj = 175°C:1.9 V

这些特征解释了二极管两端的电压如何高度依赖于其温度。因此,设计人员必须尽量控制这种电压波动,因为它会改变最终系统的行为。直流扫描模拟涉及使用 SPICE 指令在 0°C 到 200°C 的温度范围内测量功率二极管两端的电压:

.DC 温度 0 200 25

仿真在不同温度下返回二极管上的以下电压值,充分证实了数据表提供的指示。彩色单元格包含文档中报告的测试温度。

表 1:温度与测量电压

温度 (°C)

二极管上的测量电压

25

1.40

40

1.45

50

1.48

75

1.54

100

1.60

125

1.70

150

1.80

175

1.90

200

2.00

如图 4所示,绿色图表显示二极管阳极上的 36 V 固定电压,黄色图表显示阴极上的电压,具体取决于温度。这种电位差构成了“正向电压”。仍然在同一张图中,可以观察到组件上的电位差,这是由于阳极和阴极电压之间的代数差。该测试只能执行几秒钟。

MOSFET图 4:仿真在时域测量 SiC 二极管的正向电压。

 

容抗
第二个测量操作涉及 SiC 二极管的容抗。让我们看一下图 5,其中我们可以看到测试的简单电路及其 3D 表示。

MOSFET图 5:测试 SiC 二极管容抗的测试示意图

 

电气图包含串联连接的肖特基 SCS205KG SiC 二极管,电阻非常低,约为 0.1 Ω。还有一个与二极管并联的第二个电阻。它的价值非常高。电源电压是一个设置为 1 V 的正弦源。对于这个测试,我们可以执行一个 AC 模拟,其中包括在 200 kHz 和 2 MHz 之间的频率域中测量功率二极管的容抗,使用SPICE 指令:

.AC lin 1000 0.2Meg 2Meg

仿真(图 6)在正弦源的不同频率下返回不同的容抗。

MOSFET图 6:仿真在频域测量 SiC 二极管的容抗。二极管的行为就像一个小电容器,其容量取决于它所承受的频率。

 

为了测量二极管的容抗,我们使用以下公式,如图 7所示。它发生在频域的交流电中:

IM(V(n002)/I(R1))

MOSFET

图 7:计算二极管容抗的公式

二极管可以用一个电容器代替,以实现一个真实的和真实的组件来执行另一个模拟。

反向电流
第三个测量操作涉及 SiC 二极管的反向电流。让我们看一下图 8,它显示了测试的简单电路、其 3D 表示,以及涉及不同温度下的反向电流的组件数据表的摘录。

MOSFET图 8:测试 SiC 二极管反向电流的测试示意图  

电气图包含串联连接的肖特基 SCS205KG SiC 二极管,电阻非常低,约为 0.1 Ω。电源电压是设置为 1,200 V 的正弦源。二极管以反向模式连接。对于此测试,可以执行直流仿真(扫描),其中包括使用 SPICE 指令测量在 20°C 和 200°C 之间的温度范围内流经二极管的反向电流:

.DC 温度 20 200 1

图 9显示了一个图表,根据温度,二极管上的反向电流很小。

MOSFET图 9:仿真测量温度域上 SiC 二极管的反向电流。

 

图 10(V 与 I)显示了在 25°C 的固定温度下,与施加到二极管的电压相关的反向电流曲线图,介于 0 V 和 1,200 V 之间。

MOSFET图 10:在 25°C 温度下,反向电流与施加到二极管的电压的关系图。  

结论
SiC 二极管的特点是恢复时间非常快。这允许更高的开关速度和更小尺寸的磁性元件和其他无源元件。最终设备可以具有更高的功率密度。它们还为电源开关应用在效率和热性能方面提供了显着优势。这些组件可以在更高的温度下运行。温度是改变电子元件工作条件的重要因素。执行真实测试(使用真实的 SiC 组件)和仿真以评估仿真器,尤其是 SPICE 模型的功效和实用性可能会很有趣。

  审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分