×

抑制电磁干扰 (EMI) 的实用电路技术资料下载

消耗积分:0 | 格式:pdf | 大小:167.71KB | 2021-04-04

分享资料个

简介 本系列文章的第 1 部分至第 4 部分详细介绍了开关电源稳压器引起的传导发射和辐射发射,包括噪声产生机制、测量要求、频率范围、适用的测试限值、传播模式和寄生效应。在第5部分中,我将基于这一理论基础介绍抑制电磁干扰 (EMI) 的实用电路技术。 一般来说,电路原理图和印刷电路板 (PCB) 对于实现出色的 EMI 性能至关重要。第 3 部分重点强调通过谨慎的元器件选型和 PCB 布局尽量减小“功率回路”寄生电感的重要性。电源转换器集成电路 (IC) 的封装技术及其提供的 EMI 特定功能对此产生了巨大的影响。如第 2 部分所述,必须使用差模 (DM) 滤波方可将输入纹波电流的幅值充分降低至满足 EMI 合规性要求的水平。与此同时,如果需要抑制约 10MHz 以上的发射,通常使用共模 (CM) 滤波。在高频条件下,使用屏蔽也可以获得优异的结果。 本文主要介绍这些方面的内容,专门聚焦于带有集成功率 MOSFET 和控制器的转换器解决方案,提供抑制 EMI 的实例和应用指导。一般来说,转换器应在合理范围内超出传导 EMI 一定的裕度,为达到辐射限值预留空间。幸运的是,多数减少传导发射的步骤对于抑制辐射 EMI 同样有效。 了解 EMI 的相关挑战 DC/DC 转换器中的 EMI 主要由其快速开关的电压和��流特性所致。与转换器的不连续输入或输出电流相关的 EMI 相对容易处理,但更大的问题是开关电压 dv/dt 和电流 di/dt 中的谐波成分,以及与开关波形相关的振铃。 图 1 所示为存在噪声的同步降压转换器的开关 (SW) 电压波形。振铃频率范围为 50MHz 至 200MHz,具体取决于寄生效应。此类高频成分可以通过近场耦合传播到输入电源线、周边元器件或输出总线(如 USB 电缆)。体二极管反向恢复存在类似的问题,随着恢复电流流入寄生回路电感,振铃电压升高。 图 2 的原理图标识了降压转换���电路的两条重要回路。最大限度缩减电源回路的面积至关重要,原因是该参数与寄生电感和相关 H 场传播成正比。主要设计目标是通过减小寄生电感最大程度提升寄生 LC 谐振电路的谐振频率。此举可以降低存储的无功能量总值,减少开关电压峰值过冲。 在图 2 所示的自举电容回路中,高侧 MOSFET 的导通速度由一个标记为 RBOOT 的可选串联自举电阻进行控制。自举电阻会改变驱动电流瞬变率,降低 MOSFET 导通期间的开关电压和电流转换率。另一种方法是在 SW 和 GND 之间添加一个缓冲电路。同理,该缓冲电路应根据每次开关转换时的瞬态电流尖峰,占用最小的回路面积。当然,缓冲电路和栅极电阻会增加开关功率损耗,需要在效率和 EMI 之间进行权衡。如果效率和散热性能同样非常重要,则需要使用其他技术解决 EMI 相关的挑战。 转换器的 PCB 布局 表 1 至表 5 总结了通过优化 PCB 布局及元器件排布削弱 DC/DC 转换器 EMI 信号的基本准则。我将在本文的后续部分提供一项 PCB 布局案例研究,探讨如何优化降压转换器的 EMI 特性。 表1:布线及元器件排布 1 将所有功率级元器件排布在 PCB 顶部。 - 避免将电感放在底部,以免对 EMI 测试装置的基准平面产生辐射。 2 将 VCC 或 BIAS 的旁路电容(从输出端)放置于靠近各自引脚的位置。 – 在将 AGND 引脚与 GND 相连之前,首先电路中连入 CVCC 和 CBIAS 电容。 3 将自举电容与邻近的 BOOT 和 SW引脚相连接。 - 利用邻近的接地覆铜屏蔽 CBOOT 电容和开关节点,降低 CM 噪声。 表2:GND 平面设计 1 将 PCB 分层板中的第 2 层 GND平面尽可能固定在靠近顶层的位置。 - 消除 H 场、降低寄生电感并屏蔽噪声。 2

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !