Capacitance sensors detect a change in capacitance when something or someone approaches or touches the sensor. The technique has been used in industrial applications for many years to measure liquid levels, humidity, and material composition. A newer application, coming into widespread use, is in human-to-machine interfaces. Mechanical buttons, switches, and jog wheels have long been used as the interface between the user and the machine. Because of their many drawbacks, however, interface designers have been increasingly looking for more reliable solutions. Capacitive sensors can be used in the same manner as buttons, but they also can function with greater versatility, for example, when implementing a 128-position scroll bar.
For more info on how these types of sensors work, take a peek at the ADI web site.
Implementing a capacitive touch sensor solution using the AD714x requires three components:
The sensor traces can be any number of different shapes and sizes. Buttons, wheels, scroll-bar, joypad, and touchpad shapes can be laid out as traces on the sensor PCB.
Many options for implementing the user interface are available to the designer, ranging from simply replacing mechanical buttons with capacitive button sensors to eliminating buttons by using a joypad with eight output positions, or a scroll wheel that gives 128 output positions.
The number of sensors that can be implemented using a single device depends on the type of sensors required. The AD7142 has 14 capacitance input pins and 12 conversion channels, the AD7143 and AD7148 have 8 capacitance input pins and 8 conversion channels, and the AD7147 and AD7147A have 13 capacitance input pins and 12 conversion channels.
Function | File |
---|---|
driver | drivers/input/misc/ad714x.c |
i2c bus support | drivers/input/misc/ad714x-i2c.c |
spi bus support | drivers/input/misc/ad714x-spi.c |
include | include/linux/input/ad714x.h |
In Linux, there are three driver modules for the AD714x: linux-2.6.x/drivers/input/misc/ad714x.c linux-2.6.x/drivers/input/misc/ad714x-spi.c linux-2.6.x/drivers/input/misc/ad714x-i2c.c.
ad714x.c fulfills the common arithmetic and state machines for sliders, keypads, touchpads and so on. ad714x-spi.c and ad714x-i2c.c, which call common probe/remove entries in ad714x.c, merge the bottom ad714x driver into Linux SPI/I2C device driver framework. The code included works with the AD7142 and AD7147 demo board. Note that this code is covered under the GPL - if you want non-GPL source, have a look at ADI's Web site.
For compile time configuration, it’s common Linux practice to keep board- and application-specific configuration out of the main driver file, instead putting it into the board support file.
For devices on custom boards, as typical of embedded and SoC-(system-on-chip) based hardware, Linux uses platform_data to point to board-specific structures describing devices and how they are connected to the SoC. This can include available ports, chip variants, preferred modes, default initialization, additional pin roles, and so on. This shrinks the board-support packages (BSPs) and minimizes board and application specific #ifdefs in drivers.
platform data, defines how the PCB info is implemented.
Unlike PCI or USB devices, I2C devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each I2C bus segment, and what address these devices are using. For this reason, the kernel code must instantiate I2C devices explicitly. There are different ways to achieve this, depending on the context and requirements. However the most common method is to declare the I2C devices by bus number.
This method is appropriate when the I2C bus is a system bus, as in many embedded systems, wherein each I2C bus has a number which is known in advance. It is thus possible to pre-declare the I2C devices that inhabit this bus. This is done with an array of struct i2c_board_info, which is registered by calling i2c_register_board_info().
So, to enable such a driver one need only edit the board support file by adding an appropriate entry to i2c_board_info.
For more information see: Documentation/i2c/instantiating-devices
For AD7142 demo board, the platform information is:
Unlike PCI or USB devices, SPI devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each SPI bus segment, and what slave selects these devices are using. For this reason, the kernel code must instantiate SPI devices explicitly. The most common method is to declare the SPI devices by bus number.
This method is appropriate when the SPI bus is a system bus, as in many embedded systems, wherein each SPI bus has a number which is known in advance. It is thus possible to pre-declare the SPI devices that inhabit this bus. This is done with an array of struct spi_board_info, which is registered by calling spi_register_board_info().
For more information see: Documentation/spi/spi-summary
For AD7147 demo board, the platform information is:
To select it from menuconfig:
Device Drivers ---> Input device support ---> [*] Miscellaneous devices ---> <*> Analog Devices AD714x Capacitance Touch Sensor <*> support I2C bus connection <*> support SPI bus connection
We connected the AD7142 demo board to the TWI/I2C connector and AD7147 demo board to the SPI connector on the BF537 STAMP board.
For BF537 STAMP board, please set SW5-3 off as the interrupt input.
And For AD7147 eval-board, please set S4-2 on and other positions off.
Some testing output from the event_test application:
root:~> modprobe ad7142.ko input: ad7142 joystick as /class/input/input0 ad7142_js_attach: at 0x58 root:~> event_test /dev/input/event0 Input driver version is 1.0.0 Input device ID: bus 0x18 vendor 0x1 product 0x1 version 0x100 Input device name: "ad7142 joystick" Supported events: Event type 0 (Reset) Event code 0 (Reset) Event code 1 (Key) Event type 1 (Key) Event code 103 (Up) Event code 105 (Left) Event code 106 (Right) Event code 108 (Down) Event code 294 (BaseBtn) Event code 295 (BaseBtn2) Event code 296 (BaseBtn3) Event code 297 (BaseBtn4) Testing ... (interrupt to exit) Event: time 398.520833, type 0 (Reset), code 0 (Reset), value 0 Event: time 400.734865, type 1 (Key), code 108 (Down), value 1 Event: time 400.734874, type 0 (Reset), code 0 (Reset), value 0 Event: time 400.853353, type 1 (Key), code 108 (Down), value 0 Event: time 400.853360, type 0 (Reset), code 0 (Reset), value 0 Event: time 400.930182, type 1 (Key), code 103 (Up), value 1 Event: time 400.931390, type 0 (Reset), code 0 (Reset), value 0 Event: time 401.046258, type 1 (Key), code 103 (Up), value 0 Event: time 401.047461, type 0 (Reset), code 0 (Reset), value 0 Event: time 402.361193, type 1 (Key), code 294 (BaseBtn), value 1 Event: time 402.362403, type 0 (Reset), code 0 (Reset), value 0 Event: time 402.555558, type 1 (Key), code 294 (BaseBtn), value 0 Event: time 402.556760, type 0 (Reset), code 0 (Reset), value 0 Event: time 402.942508, type 1 (Key), code 295 (BaseBtn2), value 1 Event: time 402.942516, type 0 (Reset), code 0 (Reset), value 0
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !