为更好地提取烟雾图像的全局特征,提出一种基于膨胀卷积和稠密连接的烟雾识别方法。依次堆叠膨胀率不同的膨胀卷积,扩大卷积核的感受野,使得卷积核能够感知更广泛的烟雾图像区域,在不同膨胀卷积层之间设计稠密连接机制,促进卷积层之间的信息流通,实现烟雾图像局部特征和全局特征的融合。在此基础上,构造应用于烟雾识别的深度卷积神经网络,并在训练样本和标签的凸组合上完成训练以增强模型的泛化能力。实验结果表明,与 Alexnet、vGG16等方法相比,该方法具有较好的烟雾特征表达能力,能在提高烟雾识别效果的同时,减小模型尺寸效果,其实用性较好。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !