基因诊断是近年来提高肺癌治愈率的一种新型且有效的方法,但这种方法存在基因检测时间长、费用高、侵入式取样损伤大的问题。文中提出了基于成对学习和图像聚类的无监督学习的肺癌亚型识别方法。首先,采用无监督卷积特征融合网络用于学习肺癌CT图像的深度表示,有效地捕捉被忽略的重要特征信息,并使用包含不同层次抽象信息的最终融合特征来表怔肺癌亚型。然后,使用联合成对学习和图像聚类的分类学习框架进行建模,充分利用学习到的特征表示,确保有效的聚类学习,以取得更高的分类精度。最后,利用生存分析和基因分析对肺癌亚型进行多角度验证。在合作医院和TCGA-LUAD数据集上的实验结果表明,该方法通过可靠无创的影像分析和放射成像技术,发现了3种具有不冋分子特征的肺癌影像亚型,在降低基因检测问题的同时可有效辅助医师进行精准诊断和个性化治疗,进而提高肺癌患者的治愈生存率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !