随着深度学习的不断发展,卷积神经网络(CNN)在目标检测与图像分类中受到研究者的广泛关注。CNN从 Lenet5网络发展到深度残差网络,其层数不断增加。基于神经网络中“深度”的含义,在确保感受野相同的前提下,给定标准的输入图片和输出特征图,对不同层数的卷积神经网络进行训练,并将训练结果与标准输出图进行对比。在此基础上,对标准的3×3卷积核进行分解,构建由2×2大小卷积核组成的CNN。根据目标特征是否具有中心对称的性质,提出多层卷积网络初始权值的选取规则。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !