为解决单幅图像中的人群遮挡和尺度变化问题,提出一种基于多列卷积神经网络的人群计数算法。利用具有不同尺寸感受野的卷积神经网络(CNN)和特征注意力模块自适应提取多尺度人群特征,引入可变形卷积增强CNN网络空间几何形变学习能力并优化特征图,从而生成高质量的密度图。 Shanghai tech和UCF_CC_50数据集上的实验结果表明,该算法能学习输入图和人群密度图之间的映射关系,且计数准确性高、鲁棒性强。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !