针对无人机辅助采集无线传感器网络数据时各节点数据产生速率随机和汇聚节点状态不一致的场景,提出基于Q学习的非连续无人机轨迹规划算法Q-TDUD,以提高无人机能量效率和数据采集效率。基于各节点在周期内数据产生速率的随机性建立汇聚节点的汇聚延时模型,应用强化学习中的Q学习算法将各汇聚节点的延迟时间和采集链路的上行传输速率归一化到奖励函数中,通过迭代计算得到最佳非连续无人机飞行轨迹。实验结果表明,与TSP- continues TSP、NJS- continues和NJS算法相比,Q-TDUD算法能够缩短无人机的任务完成时间,提高无人机能效和数据采集效率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !