传导损耗是由设备寄生电阻阻碍直流电流在DC/DC变换器中的传导产生的。传导损耗与占空比有直接关系。当电流较高一侧的MOSFET打开后,负载电流就会从其中通过。漏源通道电阻(RDSON)产生的功率耗散可以用公式1表示:
其中D = VOUT/VIN= 占空比
对于LM2673这样的非同步设备,在MOSFET关闭时,二极管被正向偏置。在此期间,电感电流通过输出电容、负载和正向偏置二极管。负载电流流过二极管产生的功率耗散可以用公式2表示:
其中VF是选定二极管的正向电压降。
除了集成MOSFET与环流二极管中的传导损耗,电感器中也有传导损耗,因为每一个电感器都有有限的直流电阻(DCR),即线圈中导线的电阻。公式3表示电感器中的功率耗散:
传导损耗取决于负载电流。负载增大时,MOSFET中的传导损耗会增加,而且是主要损耗因素。传导损耗加上开关、驱动和低压差线性稳压器(LDO)损耗会产生很多的热量,增加集成电路(IC)的结温。增加的结温可以用公式4表示:
其中ICTj是IC的结温,TA是环境温度,θJA是IC到空气的热阻,ICPd是IC中总功率耗散。
MOSFET的RDSON通常有一个温度系数(RdsonTco)。当IC的结温升高时,RDSON会在温度系数的基础上超出额定值。数据表可能不含有这一参数,而TI的WEBENCH® Power Designer软件可以提供这一信息,用以计算设计效率,让计算结果更精确。公式5可以根据结温调整RDSON:
其中RdsonNom是 RDSON的额定值,可以在数据表中找到。
RDSON的增加取决于设备的散热性能和结温。不正确的散热可以导致RDSON的大幅增加,引起最大负载效率的大幅下降。当IC的连接焊盘(DAP)与IC板上的焊接不正确时,就会出现上述情况。
计算损耗是一个迭代过程。在每一次迭代计算IC功率损耗时,都需要评估结温和相应的RDSON,以得到精确的效率结果。WEBENCH Power Designer能很好的处理这一过程;还能显示被动元件损耗的计算结果。了解这些损耗是非常重要的,因为这可以帮助选择正确的元件和DC/DC稳压器,以保持良好的效率。现在,总传导损耗可以用公式6表示:
有了上述所有损耗,公式7对其进行加总得到总损耗:
公式8是得到的DC/DC稳压器设计效率:
图1是LM2673在不同输入电压时的负载电流曲线对应的整体效率。可以注意到负载电流低时,效率会变差;从文章的第1和第2部分可以知道,这是开关损耗以及驱动与LDO的损耗造成的。还需注意在最大负载电流时,输入电压 (VIN)越高效率越低,这是因为电压越高开关损耗就越高。负载电流在1A以上时,低VIN效率会相对较高,因为开关损耗降低。
图1:LM2673效率
至此,我的关于数据表中效率的三篇博客文章就全部结束了。现在,你应当能够理解DC/DC稳压器设计中不同元件的损耗。根据你的应用需求,你现在可以清楚地确定何时选择DC/DC稳压器及其开关频率、散热电路板空间,以及何时选择二极管和电感器等被动元件。
审核编辑:郭婷
全部0条评论
快来发表一下你的评论吧 !