电源基础知识 MOSFET结构

电子说

1.3w人已加入

描述

BOSHIDA电源模块 电源基础知识 MOSFET结构
制造MOSFET器件的挑战在于,需要通过施加在绝缘栅极上电压的影响,将半导体材料的极性反转,从而在源极和漏极之间形成一个导电沟道。现在有几种方法可以实现,通过单元晶胞结构横截面可以很好地说明这个过程,如图3.11所示:

电源


可以看到,漏极金属接触在图中右上方的n+区域,并且穿过它到达横向延伸穿过整个单元的n区域。源极金属接触左上方的n+区域和p区域,并且在栅极的影响下,导电沟道将在p区域中形成。栅极上的正电压将使p区域表面从p反转为n,由此形成源极和漏极之间导通流通路径。请注意,p区和n区之间的连接点处形成了体二极管,当源极相对于漏极电压为正时,这会允许源极和漏极之间的仍然会导通。该图显示了单个晶胞单元的横截面,但是其导通阻抗具有正温度系数的特性,可以允许多个晶胞并联并具有良好的均流能力。这是因为如果电流局部集中于某个地方,局部加热将增加导通电阻,从而自动减少该部分流经的电流。此特性非常有用,因为它允许MOSFET制作过程中将具有数千个单元进行并联以得到大电流器件。
该结构的底层,也即衬底,在分立的MOSFET中被制成n+,漏极电流垂直向下流到安装表面,这样总的导通阻抗最小。当MOSFET被制造为集成结构时(如封装在控制器中),衬底则被制成p型以将其与电路的其余部分相隔离,并且漏极电流横向流动到其与顶表面上的漏极接触的位置,这样给漏极电流增加更长的电阻路径(导通阻抗增加)。
尽管这种结构描述是针对N沟道MOSFET的,但是以类似的技术方式可以制造出互补型的P沟道器件,只是其中半导体区域的极性相反而已。

审核编辑 黄宇
 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分