EDA/IC设计
版图层次定义
N阱 N阱概念
如果制造集成电路的硅片掺杂了磷等施主杂质,则该类型的硅片称为n型硅;如果掺杂了硼等受主杂质,则该类型的硅片称为p型硅。 在制作CMOS集成电路时,N沟MOSFET(简称NMOS)直接制作在p衬底上;P沟MOSFET(简称PMOS)需要制作在N阱上。
实际上制造集成电路前,有些CMOS工艺需要先在硅片上生长一层外延层,以减少闩锁效应的影响。习惯上把外延层和原来的衬底都称作衬底。使用p衬底n阱的工艺称为N阱工艺。使用n衬底p阱的工艺称P阱工艺。 现代工艺出于牺牲PMOS性能来优化NMOS性能,所以大多数工艺都是N阱工艺;也有同时使用N阱和P阱的工艺,称为双阱工艺。 N阱和P衬底构成寄生二极管,在CMOS电路中衬底通常接最低点评,确保二极管处于反偏。
N阱的作用
主要作用制造PMOS; 掺杂浓度较低,电阻率较高,可用于制造电阻,称为阱电阻; N阱可以和衬底构成二极管,可用于制造寄生PNP管。
N阱制作
硅片涂胶后,通过N阱掩模版,将硅片放在光线下,通过显影去掉被光照的光刻胶; 氧化层生长
曝光 在光刻胶工艺过程中,涂层曝光、显影后,曝光部分被溶解,未曝光部分留下来,该涂层材料为正性光刻胶; 此时的掩模版类似遮光板,绿色部分不透光,镂空的白色部分透光;
在光刻胶工艺过程中,涂层曝光、显影后,曝光部分被保留下来,而未曝光被溶解,该涂层材料为负性光刻胶。 此时的掩模版类似透明板,蓝色部分不透光,其余部分透光;
无论是哪种方式,核心思想都是制造一个区域,用以掺杂; 掺杂 将硅片暴露在施主原子下,施主杂质会被光刻胶挡住,同时通过光刻胶上的开孔扩散到开孔区域的硅片中;
去掉光刻胶,形成N阱 扩散到一定时间后,N阱的深度达到工艺期望值。 施主杂质不仅会沿垂直硅片的方向扩散(纵向扩散),也会在硅片中间向四周扩散(横向扩散),此特性跟N阱的设计规则密切相关。
N阱制作流程图
Layout图示
有源区(薄氧区) 有源区概念
源区、漏区、沟道区合称MOS管的有源区,有源区之外的区域定义为场氧区(Fox)。有源区跟场氧区之和就是整个芯片表面,即 Active + Fox = Surface。 有源区叫Active,也叫diff 或 thin oxide。 有源区只要用于制造N型器件和P型器件,也可以用于金属1和衬底或阱的接触。从某种意义上说有源区的掩膜板主要用于打开离子注入的窗口。 实际上有源区掩膜板的意义在于作为制造硅局部氧化(LOCOS)和薄氧(封闭图形内形成薄氧,封闭图形外形成LOCOS)。
有源区制造
LOCOS
LOCOS (Local Oxidation of Silicon:硅的局部氧化):CMOS工艺最常用的隔离技术,以氮化硅为掩膜实现了硅的选择氧化,在这种工艺中,除了形成有源晶体管的区域以外,在其它所有重掺杂硅区上均生长一层厚的氧化层,称为隔离或场氧化层。 缺点:常规的LOCOS工艺由于有源区方向的场氧侵蚀(SiN边缘形成类似鸟嘴的结构,称为“鸟喙效应”bird beak)和场注入的横向扩散。
这种侵蚀会影响MOSFET的沟道宽度,所以实际制造出来的器件的沟道长度会比版图所画的沟道长度小。现代工艺中0.25um以下特征尺寸的工艺一般不使用LOCOS做隔离,而是使用浅槽隔离(STI)。
Layout图示
多晶硅1(Poly1)
作用 最主要的作用是用于制造MOSFET的栅; Poly1和Poly2制造PIP电容(多晶硅1—绝缘层—Poly2); Poly电阻; Poly互连(此时最大的问题是Poly的方块电阻数量级比较大);
栅极制作
晶体管中栅结构的制作是流程中最关键的一步,因为它包含了最薄栅氧化层的热生长以及多晶硅栅的刻蚀,而多晶硅栅的宽度通常都是整个硅片上最关键的线宽。 栅氧化层的生长 > 多晶硅淀积 > 多晶硅掩模制作 > 多晶硅栅刻蚀
Poly跨过有源区时,源、漏和沟道自对准于栅,这也称为自对准工艺。 在不制作器件时,禁止多晶跨过有源区,避免产生寄生器件。 多晶在形成器件时,需要超过有源区一定距离,保证源漏不会发生短路。
Layout图示
P+/N+扩散区
有源区的掩膜板主要用于打开离子注入的窗口。而P+和N+扩散区的作用在于实现离子的注入,从而控制硅的掺杂类型。 多晶硅栅可以作为NMOS和PMOS的源/漏的自对准掩膜,注入可以按照任意顺序进行,可以先进行N型源漏的注入,也可以先进行P型源漏的注入。
Layout图示
Layout图示
接触孔
接触的目的是在所有的硅的有源区和Poly形成金属接触,这层金属接触可以使硅和随后淀积的金属导电材料更加紧密的结合。 Layout图示
金属层(Metal)
接触孔硅化后,在晶圆上淀积掺铜的铝层,淀积金属后的晶圆涂上光刻胶并采用金属掩模版光刻,去除不需要的金属,形成互连结构。
Layout图示
通孔VIA
层间介质充当各层金属以及第一层金属与硅之间的介质材料。层间介质上有许多小的通孔,这些层间介质为相邻的金属层之间提供了电学通道。通孔中常用导电金属(比如钨)来填充,形成金属层间的电学通路。 简单反相器版图 N阱(TB)
有源区(TO)
Poly1(GT)
Poly2阻挡层(IM)
P+扩散区
N+扩散区
接触孔
金属层1
通孔
金属层2
编辑:黄飞
全部0条评论
快来发表一下你的评论吧 !