特征提取是手写体数字识别研究中的重要问题,有效、稳定的特征是提高识别率和识别精度的关键。该文提出了一种基于分数本征特征和核非线性分类器的手写数字识别方法,首先找到时频平面的一个轴进行分数傅里叶变换,使不同类别样本在这个轴上最大限度地分开,然后用主元分析进行降维,得到比较稳健的低维特征,再将常用分类器用于特征分类,实现对手写数字的识别。对实际数据进行实验,结果表明上述本征特征与核非线性分类器相结合有较高的识别率和训练、分类效率。Feature extraction is an important part in handwritten numeral recognition. Efficient and robust feature is a key to improving recognition rate and efficiency. This paper adopts fractional Fourier transform and principal component analysis to extract robust and compact features called fractional eigenafeatures. In classification, five kernel-based nonlinear classifiers, Parzen and robust Parzen classifiers, radial basis function classifier, support vector classifier, and kernel-based nonlinear representor are applied and compared. Experimental results show the effects and efficiency of the proposed algorithm.