为进行服务组合优化及适应服务组合优化过程中 Web服务的动 态 性、不稳定性以及多种 QoS属 性 限 制等问题,提出一种多信息素动态更新的蚁群算法 MPDACO,包 括 MPDACO 局部优化算法和 MPDACO全局优化算法,该算法基于建立的服务组合模型,在基本蚁群算法基础上进行研究和改进,可以适应服务组合优化过程中发生的服务无效以及服务中 QoS变化等情况.另外,为使算法能较快地收敛于最优解,在实验基础上对蚁群算法策略进行了改进.为验证以上算法的有效性,在一个旅游领域的服务推荐系统中对算法进行了仿真实验,实验结果表明文中提出的算法较基本蚁群算法及一种应用于服务选择的遗传算法有更好的性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉