×

如何在障碍空间中基于并行蚁群算法进行k近邻查询

消耗积分:0 | 格式:rar | 大小:0.91 MB | 2019-03-27

分享资料个

  为解决障碍空间中的后近邻查询问题,提出一种基于改进的并行蚁群算法的五近邻查询方法( PAQ)。首先,利用不同信息素种类的蚁群实现并行查询矗近邻;其次,增加时间因素作为路径长短的判断条件,以最直接地呈现蚂蚁的搜索时间;然后,重新定义初始信息素浓度,以避免蚂蚁的盲目搜索;最后,引入可视点将障碍路径分割为多段欧氏路径,选择可视点进行概率转移,并改进启发函数,以促使蚂蚁朝着更为正确的方向搜索,避免算法过早陷入局部最优。与WithGrids相比,当数据点个数小于300时,对于线段障碍,算法运行时间平均缩短约91. 5%;对于多边形障碍平均缩短约78.5%。实验结果表明,该方法在数据规模较小时的运行时间具有明显的优势,且可以处理多边形障碍。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !