绝缘栅双极型晶体管(IGBT)作为电力电子领域中至关重要的元件,其关断过程的分析对于理解其性能和应用至关重要。IGBT结合了双极型晶体管(BJT)和场效应晶体管(MOSFET)的优势,具有导通特性好、开关速度快等特点。下面,我们将从IGBT的关断波形、关断时间的影响因素、以及关断过程中的具体阶段等方面,对其关断过程进行详细分析。
IGBT的关断波形大致可以分为三个阶段:
IGBT的关断时间 toff 可以表达为:
在关断初期,栅极电压 Vgs 开始下降,MOSFET的门极电压逐渐减小至Miller平台电压 Vmr。此时,漏源电压 Vds 增大至最大值Vds(max),而漏源电流 Ids 保持不变。由于 Ib=Ids,BJT的集射极电流 Ice也保持不变。此阶段为MOSFET行为主导,因此关断延迟时间 td(off) 主要由MOSFET的固有参数决定,如栅极驱动电阻 RG、栅源电容CGS、栅漏电容 CGD、栅源跨导 gfs 等。
关断延迟时间的计算公式为:
当栅极电压继续下降,MOSFET进入Miller平台区,此时漏源电压 Vds 迅速上升,而漏源电流 Ids 仍然保持不变。由于BJT的集射极电流Ice 受 Ib 控制,因此在该阶段 Ice 也保持不变。Δt 时间的计算公式为:
当栅极电压降至阈值电压以下时,MOSFET的沟道反型层消失,沟道电流 IMOS 迅速下降为零。此时,IGBT的电流主要由BJT部分承载,即I(t)=IC(BJT)(t)。随着n−区过剩载流子空穴的复合,电流逐渐下降至零,此过程称为阶段II,是关断电流下降时间 tf 的主要组成部分。
随着集电极-发射极电压 VCE 的增大,J2结耗尽层宽度逐渐增大,导致 ΔI 变小(ΔI 为阶段I中电流的变化量)。若保持导通电流 I0 不变,则I1(阶段II开始时的电流)增大,进而关断时间延长。因此,在相同电流下,VCE 越大,关断时间越长。
随着IGBT电流的增大,BJT的电流放大系数 β 逐渐减小,导致 ΔI 占 I0 的比例增大,而拖尾电流占总电流 I0的比例减小,进而关断时间缩短。特别地,当电流较小时,关断时间很长,且随电流的增大迅速缩短;当电流大于一定值时,关断时间恢复至正常值附近,并随电流的增大缓慢减小。
在IGBT的关断过程中,物理机制主要涉及载流子的复合与耗尽层的变化,这些变化直接影响了电流和电压的动态行为。
在IGBT关断阶段,特别是在关断下降时间tf期间,n型基区(n-base)中的过剩载流子(主要是空穴)开始复合。这些空穴在IGBT导通期间由p+集电极注入,并在n型基区中积累,以维持BJT部分的导通状态。当栅极电压降至阈值以下,MOSFET沟道关闭,无法再为BJT提供基极电流,此时n型基区中的空穴开始通过复合过程消失。复合过程主要包括直接复合和通过复合中心的间接复合,这些过程的速度决定了电流下降的速度。
随着集电极-发射极电压VCE的上升,J1(发射极-基极)和J2(集电极-基极)结的耗尽层开始扩展。耗尽层的扩展增加了电阻,限制了电流的流动。特别是在J2结,耗尽层的扩展减少了n型基区向集电极的电荷注入,进一步加速了电流的下降。此外,耗尽层的扩展还改变了电场分布,影响了载流子的迁移率和扩散过程。
在关断过程的后期,会出现一段拖尾电流。这是因为在n型基区中,部分空穴由于距离复合中心较远或复合速率较低,无法在短时间内完全复合。这些剩余的空穴继续向集电极扩散,形成拖尾电流。拖尾电流的存在增加了关断时间,并可能产生额外的热量和电压应力。为了减少拖尾电流,可以采取一些措施,如优化n型基区的掺杂浓度和厚度,引入复合中心等。
温度对IGBT的关断过程也有显著影响。随着温度的升高,载流子的迁移率和扩散系数增加,复合速率也加快。这通常会导致关断时间缩短,但也可能导致电流和电压的波动增加。此外,高温还可能降低IGBT的击穿电压和长期可靠性。因此,在设计IGBT系统和控制策略时,必须考虑温度的影响。
综上所述,IGBT的关断过程是一个复杂的物理和化学过程,涉及载流子的复合、耗尽层的扩展、拖尾电流的产生以及温度效应等多个方面。通过深入理解这些机制和影响因素,并采取有效的优化策略,可以显著提高IGBT的关断性能和系统的整体性能。
全部0条评论
快来发表一下你的评论吧 !