×

基于PIC32的以太网音箱设计案例

消耗积分:1 | 格式:rar | 大小:1.5 MB | 2017-10-17

分享资料个

1 前言
  在日常生活中人们听到的各种声音,其信号强度都是随时间连续变化的,我们称这种信号为模拟信号。传统的声音记录方式是将这种模拟信号直接记录下来,例如磁 带录音和密纹唱片(也称EP唱片)就是将声音拾取处理后以磁记录或机械刻度的方式记录下来,此时磁带上剩磁的变化或密纹,唱片音槽内的纹路起伏变化都是与声音信号的变化相对应、成正比的。记录储存这种模拟声音信号的载体,诸如密纹唱片、盒式磁带等,称为模拟音响软件,而能够播放和(或)记录这些软件的信号 处理设备,诸如电唱机、磁带录音机等,则称为模拟音响设备或模拟音响系统。模拟信号在录制、传输、处理和放大过程中,很容易产生失真和噪声,使得模拟音响软件和硬件的电声技术指标难以大幅度提高[1]。
  数字信号抗干扰能力强、无噪声积累。在模拟通信中,为了提高信噪比,需要在信号传输过程中及时对衰减的传输信号进行放大,信号在传输过程中不可避免地叠加上的噪声也被同时放大。随着传输距离的增加,噪声累积越来越多,以致使传输质量严重恶化。对于数字通信,由于数字信号的幅值为有限个离散值(通常取两个幅值),在传输过程中虽然也受到噪声的干扰,但当信噪比恶化到一定程度时,即在适当的距离采用判决再生的方法,再生成没有噪声干扰的和原发送端一样的数字信号,所以可实现长距离高质量的传输[2]。
  数字通信的信号形式和计算机所用信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储、处理和交换,可使通信网的管理、维护实现自动化、智能化。数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小、功耗低。便于构成综合数字网和综合业务数字网。采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。占用信道频带较宽。一路模拟电话的频带为4kHz带宽,一路数字电话约占64kHz,这是模拟通信目前仍有生命力的主要原因。随着宽频带信道(光缆、数字微波)的大量利用(一对光缆可开通几千路电话)以及数字信号处理技术的发展(可将一路数字电话的数码率由64kb/s压缩到32kb/s甚至更低的数码率),数字电话的带宽问题已不是主要问题了[3]。
  以上介绍了数字信号具有很多优点,克服了模拟音响技术的缺陷,数字音响技术应运而生,并从本世纪80年代起获得了引人注目的发展。
  传统公共广播系统(如校园、公园、商场等)同时只能播放一个节目,因此听众的选择性较小;并且模拟信号在传输的过程中会衰减、易受干扰而增加噪声。随着以太网基础设施日趋完善,数字化信号处理已经成熟。因此本文提出了以太网音箱替代传统模拟广播音响,利用网络传输数字音频,既可以保证音频信号质量,还可以根据应用环境和区域进行单播、组播,使广播内容更有针对性。本项目使用PIC32 Ethernet Starter Kit,利用PIC32 Starter Board PIM Adapter外接DA驱动底板。利用以太网通信传输MP3码流和基于PIC32的高性能软解码MP3文件,利用SPI接口驱动DA输出模拟信号,实现了高效、高质量、低成本的以太网音箱。
  2相关技术和原理
  2.1相关技术
  2.1.1 MP3
  MP3全称是动态影像专家压缩标准音频层面3(Moving Picture Experts Group Audio Layer III)。是当今较流行的一种数字音频编码和有损压缩格式,它设计用来大幅度地降低音频数据量,而对于大多数用户来说重放的音质与最初的不压缩音频相比没 有明显的下降。它是在1991年由位于德国埃尔朗根的研究组织Fraunhofer-Gesellschaft的一组工程师发明和标准化的。
  使用PCM信号进行MP3压缩时,以1152个PCM采样值为单位,封装成具有固定长度的MP3数据帧,帧是MP3文件的最小组成单位。在解码时,利用数据帧里的信息就可以恢复出1152个PCM采样值。这1152个采样值被分为2个粒度组,每个粒度组包含576个采样值。一个MP3数据帧分为5个部分:帧头、CRC校验值、边信息、主数据、附加数据。
  数据流的同步以及帧头信息的读取MP3数据流的同步以帧为单位,每一帧的帧头都包含同步信息。这个同步信息是连续的12比特的‘1’组成。MP3音频解码过程中的第一步就是使解码器与输入数据流同步。在启动解码器后,可以通过搜索数据流中的12比特长的同步字来完成。在取得同步以后跟着的数据就是帧头信息,包括采样率、填充位、比特率等信息。
  主数据的读取在MP3编码过程中使用了比特池技术,所以当前帧的主数据不一定全部都在当前帧中,在解码过程中,必须结合主数据开始指针的值来确定主数据的开始位置。主数据包含的数据有缩放因子、哈夫曼数据及附加数据。这些字段在主数据中有固定的格式。
  哈夫曼解码和反量化在MP3编码过程中,根据心理声学模型的输出,对离散余弦变换的输出样本以粒度为单位进行的量化和分配,再对量化的结果进行哈夫曼编码。量化和编码主要是通过循环迭代完成的,循环模块分为三层来描述,最高层为帧循环,它调用外层迭代循环,而外层迭代循环又调用内层迭代循环。但在解码过程中,哈夫曼解码和反量化过程是分开实现的。每个粒度组的频率线都是用不同的哈夫曼表来进行编码的,因此在解码过程中,需要采用不同的解码方法。反量化频谱过程就是基于所得到的哈夫曼解码数据,根据逆量化全缩放公式和帧边信息,对于不同的窗类型采用不同的公式以恢复576个频率线的真实值。
  反量化过程中得出的频谱值不是按相同顺序排列的。在编码的MDCT过程中,对于长窗产生的频谱值先按子带然后按频率排列;对于短窗,产生的频谱值按子带、窗、频率的顺序排列。为了提供哈夫曼编码效率,短窗中的数据被重新排列,按照子带、频率、窗的顺序排列。解码时,重排序及时将短窗中的频谱值重新排列。同样,在编码的MDCT过程中,为了得到更好的频域特性,对长窗对应每个子带进行了去混叠处理,为了得到正确的音频信号,在解码时必须对长窗对应的子带进行混叠重建。
  逆向离散余弦变换主要是使用逆向离散余弦变换的公式,对反量化得出的信号进行变换。逆向离散余弦变换的计算十分复杂,为了提高效率,可以对计算做一些优化。
  频率反转和子带合成频率反转是对逆向离散余弦变换的输出值中的奇数号子带(0到31号子带中的1,3,5,。..,31)中的奇数号样本值(每个子带中的 0到17号样本值的1,3,5,。..,17号样本值)进行反相处理,用来补偿编码时为提高离散余弦变换效率而进行的频率反转。子带合成滤波器将32个带宽相等的子带中的频域信号反变换成时域信号。子带合成是逆向离散余弦变换后的一个通道中32个子带的样值,经过一系列的计算还原出32个PCM数字音频信号的过程。子带合成过程先将32个子带样值进行逆向离散余弦变换,生成64个中间值,将这64个中间值转入到一个长为1024点的类似先进先出FIFO的缓存,再在这1024个值中抽取一半,构成一个512个值的矢量,再进行加窗运算,最后将加窗结果进行叠加生成32个时域输出。
  2.1.2 RTLL
  应用程序开发人员可能考虑在他们的应用程序中使用开源的代码组件。开源代码的证书可能要求覆盖特殊代码。这个要求对开发人员的开发或拥有者很不方便。RTLL(Run-Time Library Loading),运行时库载入技术便应用于这种情形下。利用这种技术不会将开源代码链接到主应用程序。它们被另外编译,两者不相互联系。开源程序库是在运行时才会利用载入器将函数指针集合载入[4]。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !