针对故障诊断过程中基于简单的多类故障特征联合决策存在特征集维数多、数据冗余、故障识别率不高的缺点,提出了一种基于异类特征优选融合的故障诊断方法。该方法根据多类特征数据的轮廓图,分析各维特征数据的聚类特性,去除聚类性弱、对故障区分无益的冗余特征维度,仅保留聚类性强的特征维度用于故障识别。在轴承故障诊断实验中,选用故障信号时域统计量和小波包能量两类多维特征进行优选融合,并采用反向传播(BP)神经网络进行故障模式识别。故障识别率达到lOO%,显著高于无特征优选的故障诊断方法。实验结果表明所提出的方法简便易行,可以显著提高故障识别率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !