×

揭开图形信号处理的面纱,看背后的大学问

消耗积分:1 | 格式:rar | 大小:0.4 MB | 2017-12-10

分享资料个

 这篇文章是我从事ISP研究数年来的一些经验总结,没有用到深奥的理论知识,有的只是根据实际状况来处理的一些常规方法,以及曾经犯过的错误总结。我想把ISP function的原理用简单浅显的语言描述出来,希望对初学者有所帮助。这里的ISP主要是指从CMOS sensor输出的bayer pattern,到转换成通用的YUV或者YCbCr格式的过程,通常用于USB摄像头/监控摄像头/手机/平板等芯片设计中。
  在IC设计中,受限于处理速度,像素级的ISP算法都相对简单,只会用到加/减/乘/比较等基本运算,通常不会用到除法、指数、对数、平方根、三角函数等复杂运算。以1080p 30fps的视频为例,像素处理速度为1080*1920*30=62M pixel/s,每个pixel都需要非常多的基本运算,用pipeline的方式实现连续高速计算。像除法,指数运算或者三角函数,则较多的时钟周期才能完成一次计算,因此不适用于ISP的像素级处理,在算法设计中要尽量避免这些复杂运算。ISP中也有针对整幅图像处理的运算(非像素级),例如白平衡AWB,自动曝光AE和自动对焦AF,这些算法比较灵活,处理速度要求不高,通常由CPU来处理的,任何复杂运算都可以用,只要CPU性能足够。
  研究ISP算法是一件充满乐趣的事情,原因在于ISP算法没有标准答案,任何ISP算法都没有一个标准协议,每个人都可以自由发挥自己的想象力,目的只有一个,让人眼看得舒服,大家看着好,才是真的好。每个人的想象力各不相同,算法复杂度也是无穷尽,评价ISP算法的优劣,主要就是一个性价比:在一定复杂度要求的条件下,达到最好的图像质量。在学习ISP相关的paper的时候,要关注的重点是算法的原理,或者说出发点,而不是计算公式,因为公式中通常都是复杂运算,难以实际用起来,在理解了原理之后,可以找近似的替代算法来达到相近的效果。
  从视觉感受来分,我把ISP大致分成亮度,色彩和细节三个部分。亮度是指对图像整体的亮度调整,涉及到的算法有自动曝光Auto Exposure,黑电平校正Black Level Correction,镜头阴影校正Lens Shading Correction,Gamma,High Dynamic Ranger等。涉及到色彩的有白平衡Auto White Balance,色彩校正Color Correction Matrix,饱和度Saturation,色相Hue等。细节的算法主要的去噪Denoise,插值interpolation,缩放zoom,边缘增强edge enhance等。还有一些其他相对特殊的算法,例如自动对焦Auto Focus,防闪烁anti-flick等。一个简化的ISP算法框架如下图。
  揭开图形信号处理的面纱,看背后的大学问
  Figure 0.1 ISP简单框架
  ISP各个基本算法是相对独立的,但是在整体效果呈现上,又是相互关联的。举例来说,Lens Shading Correction这个算法把要图像四周的拉亮,这就导致图像四周的Noise比较大, 而Noise较大的话,edge enhance就要对四周的像素做特殊处理,使得Noise不会被放大,这会导致图像中心相对清晰,四周相对模糊。经常调校ISP的人,对此可能深有体会。诸多ISP算法模块,内在是有一些确定的逻辑关系的,上图中的框架结构,有些顺序是可以改变,有些则不可以改变, 有些改变会导致算法复杂度提升。ISP算法中有不少特性是相互对立矛盾的,例如清晰度和噪声,AWB中的稳定度和精确度,AE中的收敛稳定性和收敛速度等,这些对立的特性,就像天平的两端,需要根据客户需求或者实际应用场景去做平衡。
  对ISP的研究学习过程,既有符合构想预期的情况,也有充满意外的时候,同时感叹一下人眼或者说人脑的高复杂度和高灵敏度。ISP的各种数学运算,最终是要让CMOS sensor感应到的图像,转化模拟成人眼/人脑感受到的图像,通过不断的学习和尝试,让各种ISP模块中的数学计算,能够得出期望的图像效果,或者从图像效果反推出算法中的原因所在。一个有经验的ISP算法研究工程师,就是建立起数学计算和图像效果之间的映射关系。
  接下来,我将从图像format开始,然后再从图像亮度,色彩和细节三个方面来一一介绍ISP中各个function。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !