对油中溶解气体浓度发展趋势进行预测,可为变压器状态评估提供重要依据。提出一种基于深度信念网络的变压器油中溶解气体浓度预测模型。该模型以7种特征气体浓度、环境温度、变压器油温为可视输入,通过对基于受限玻尔兹曼机的多隐层机器学习模型训练,可自动提取气体浓度自身发展规律,逐层激活各气体组分之间及温度对气体浓度影响的强相关性,抑制、弱化无关和冗余信息。该模型具有较高预测精度,克服了传统单一变量预测方法稳定性差的问题,同时避免了人工干预过程。通过算例分析,验证了该方法的有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !