针对大规模数据中心网络中如何有效监控网络异常事件、发现网络性能瓶颈和潜在故障点等问题,在深入分析InfiniBand( IB)网络的特性,引入了特征选取策略和增量学习策略的基础上,提出了一种面向大规模IB网络增量学习的故障诊断方法IL_Bayes,该方法以贝叶斯分类方法为基础,加入增量学习机制,能够有效提高故障分类精度。在天河2真实的网络环境下,对算法的诊断精度和误诊率进行了验证,结果表明IL_Baves算法具有较高的故障分类精度和较低的误诊率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !