脑网络学习旨在从整体上研究大脑各功能区的交互,对于人类深入了解大脑功能和结构以及对一些脑疾病的诊断都具有非常重要的作用。作为脑网络分析的重要工具,机器学习由于能够从数据中学习规律并对未知数据进行预测,已成为近年来脑网络分析领域一个新的研究热点。本文综述了近年来基于机器学习技术在脑网络分析中的典型研究方法和应用,主要从网络的构建、特征学习和分类预测等3个方面加以介绍。最后,总结全文并展望未来研究方向。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !