文本情感分析的目的是判断文本的情感类型。传统的基于神经网络的研究方法主要依赖于无监督训练的词向量,但这些词向量无法准确体现上下文语境关系;常用于处理情感分析问题的循环神经网络(RNN),模型参数众多,训练难度较大。为解决上述问题,提出了基于迁移学习的分层注意力神经网络(TLHANN)的情感分析算法。首先利用机器翻译任务训练一个用于在上下文中理解词语的编码器;然后,将这个编码器迁移到情感分析任务中,并将编码器输出的隐藏向量与无监督训练的词向量结合。在情感分析任务中,使用双层神经网络,每层均采用筒化的循环神经网络结构一最小门单元(MGU), 有效减少了参数个数,并引入了注意力机制提取重要信息。实验结果证明,所提算法的分类准确率与传统循环神经网络算法、支持向量机( SVM)算法相比分别平均提升了8. 7%及23. 4%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !