针对传统虚拟机整合( VMC)方法难以保持主机工作负载长期稳定的问题,提出一种基于高斯混合模型的高效虚拟机整合( GMM-VMC)方法。为了准确地预测主机负载的变化趋势,首先,使用高斯混合模型(GMM)对活动物理主机的工作负载历史记录进行拟合;然后,根据活动物理主机工作负载的GMM和主机自身的资源配置情况计算主机的过载概率,并根据过载概率判定主机是否存在过载风险;对存在过载风险的物理主机,根据部署在该物理主机上的虚拟机对降低主机过载风险的贡献和虚拟机迁移所需的时间这两个指标进行待迁移虚拟机选择;最后,使用GMM估算待迁移虚拟机对各个目标主机过载风险的影响,并选择受影V向最小的主机作为目标主机。通过CloudSim仿真平台模拟该GMM-VMC方法,并根据能源消耗、服务质量(QoS)、整合效率等指标与已有的整合方法进行对比,实验结果表明,GMM-VMC方法能够有效地降低数据中心能耗,提高服务质量。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !