本文介绍被机器学习顶级国际会议 AAAI 2023 接收的论文 《Improving Training and Inference of Face Recognition Models via Random Temperature Scaling》。论文创新性地从概率视角出发,对分类损失函数中的温度调节参数和分类不确定度的内在关系进行分析,揭示了分类损失函数的温度调节因子是服从 Gumbel 分布的不确定度变量的尺度系数。从而提出一个新的被叫做 RTS 的训练框架对特征抽取的可靠性进行建模。基于 RTS 训练框架来训练更可靠的识别模型,使训练过程更加稳定,并在部署时提供一个对样本不确定度的度量分值,以拒识高不确定的样本,帮助建立更鲁棒的视觉识别系统。大量的实验表明 RTS 可以稳定训练并输出不确定度度量值来建立鲁棒的视觉识别系统。