×

如何使用坐标变换和保角形变换理论设计电磁波波导转接器件

消耗积分:1 | 格式:pdf | 大小:0.43 MB | 2020-07-07

绝代双骄

分享资料个

  基于坐标变换的光学变换理论已经提出有好多年了,各种新型电磁器件被提出来,该文结合保角形变换理论设计了一款电磁波波导转接器件,它的材料是非均匀各向同性的,而且比各向异性电磁器件更容易实现,然而它的最大的局限在于这种设计方法必须在离开障碍物后又恢复到原来的空间。

  Pendry et al.提出了一个很有趣的想法,这个想法就是用坐标变换(即变换光学)的思想达到调控电磁波的能力。很不幸的是,基于坐标变换的电磁波导波器件大多数的相对介电常数和磁导率往往是非均匀各向异性材料,这给实现带来了很大的困难。保角形变换是光学变换的一种特例,它在二维情形下可以做到各向同性材料。在保角形变换后,拉普拉斯方程本身成了一个系数,二维亥姆霍兹方程在保角形变换后使得该系数反映在折射率的变化,也就是说在保角形变换后,如果折射率随着系数发生变化,那么满足同样的波动方程,从而达到调控电磁波的能力。在本文中,我们用基于保角形变换理论设计了一款电磁波导波结构,它的材料是非均匀各向同性的,这在实现上降低了难度。

  换坐标变换前的空间为w,该空间的折射率为1;坐标变换后的空间为z,该空间的折射率为n,则z空间的折射率: n=|dw/dz|,光学理论已经提出好几年了,虽然它的想法很新颖,但是因为根据该想法设计的大多数电磁器件的电参数为非均匀各向异性,很多学者专家不断简化参数,根据对数保角形变换设计了可以转弯的波导转接器件,但是我们认为它并不能达到完美的转接效果,因为空间折射率的截断,必然带来散射,在本篇论文中我们基于共形变换原理设计各向同性非均匀的导波转接器件。虽然光学变换理论在导波结构中的推广已经好多年了,电参数为均匀各向异性的电磁波导波器件也已经实现,基于对数的保角形变换的导波转弯的结构也已经实现,我们认为它不能做到真正的波导转接结构,包括很复多函数在导波结构中很难应用,因为在边界的地方会发生空间折射率的截断,从而达不到完美的转接效果。在本篇论文中,我们就是通过寻找一些可行的设计函数,使得基于保角形变换的这种导波结构变得很可行。但是我们的导波结构因为函数的求解问题,导致波导的转接只能发生在一直前进的情形下,这也是我们本篇论文的局限性。我们通过将中间某个区域弯曲,而离开这个区域导波结构又恢复到原来的情形,在数学上可以表示为:

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !