计算电磁学是指对一定物质和环境中的电磁场相互作用的建模过程,通常包括麦克斯韦方程计算上的有效近似。计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。 1、基于积分方程的方法 1.1、离散偶极子近似(discrete dipole approximation,DDA) DDA是一种计算电磁波在任意几何形状物体上散射和吸收的方法,其表达式基于麦克斯韦方程的积分形式。DDA用有限阵列的可极化点来近似连续形式的物体。每个点通过对局部电场的响应获得对应的偶极子矩量,然后这些偶极子通过各自的电场相互作用。因此,DDA有时也被认为是耦合偶极子近似。这种线性方程的计算一般采用共轭梯度迭代法。由于离散矩阵的对称性,就可能在迭代中使用FFT计算矩阵的向量乘法。 1.2、矩量法(Method of Moments,MoM ),边界元法(Boundary Element Method,BEM ) MoM和BEM是求解积分形式(边界积分形式)的线性偏微分方程的数值计算方法,已被应用于如流体力学,声学,电磁学等诸多科技领域。自从上世纪八十年代以来,该方法越来越流行。由于只计算边界值,而不是方程定义的整个空间的数值,该方法是计算小表面(体积)问题的有效办法。从概念上讲,它们在建模后的表面建立网格。然而对于很多问题,此方法的效率较基于体积离散的方法(FEM,FDTD)低很多。原因是,稠密矩阵的生成将意味着存储需求和计算时间会以矩阵维数的平方律增长。相反的,有限元矩阵的存储需求和计算时间只会按维数的大小线性增长。即使可以采用矩阵压缩技术加以改善,计算成功率和因此增加的计算复杂性仍强烈依赖问题的本质。 BEM可用在能计算出格林函数的场合,如在线性均匀媒质中的场。为了能使用BEM,需要对问题有很多限制,使用上不方便。以下是运用MoM的计算程序:Vector Fields Ltd Concerto、CST MICROWAVE STUDIO、Numerical Electromagnetic Code (NEC)、Sonnet Lite、FEKO
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !