×

GaN功率放大器的主要特征和特性及发展状态评测

消耗积分:1 | 格式:pdf | 大小:0.46 MB | 2020-07-07

分享资料个

  氮化镓(GaN)功率半导体技术为提高RF/微波功率放大的性能水平作出了巨大贡献。 通过降低器件的寄生参数,以及采用更短的栅极长度和更高的工作电压,GaN晶体管已实现更高的输出功率密度、更宽的带宽和更好的DC转RF效率。 例如,在2014 年,能支持8kW脉冲输出功率的GaN工艺的X波段放大器已被验证能在雷达系统应用中替代行波管(TWT)和TWT放大器。到 2016年,预计会有很多这种支持32kW的固态GaN工艺的共V领放大器出现。在期待这些放大器的同时,我们将考察高功率 GaN放大器的一些主要特征和特性。不久前,GaN还是反射频电子战(CREW)应用的首选技术,已有成千上万的放大器交付实际使用。 现在,该技术也被部署到机载电子战领域,开发中的放大器能够在RF/微波范围的多个频带上提供数百瓦的输出功率。多款此系列的宽带电子战功率放大器将会在今年发布。后续研究方面包括改进高峰均功率比(PAPR)波形的线性度,此类波形被许多军用通信系统采用,包括通用数据链(CDL)、宽带网络波形(WNW)、军用无线电波形(SRW)和宽带卫星通信(satcom)应用。 ADI公司的“比特转RF”计划将整合公司在基带信号处理和GaN功率放大器(PA)技术方面的优势。 通过使用预失真和包络调制等技术,这种整合将有利于提高PA线性度和效率。过去几年发布的GaN器件既有分立式场效应晶体管(FET),也有单芯片微波集成电路(MMIC),它们已广泛用于高功率微波放大器系统。 此类器件有多家晶圆厂和器件制造商可以提供,通常采用100 mm碳化硅(SiC)晶圆制造。 硅上氮化镓工艺也在考虑当中,但硅的热导率和电导率相对较差,抵消了其在高性能、高可靠性应用中的成本优势。 这些器件的栅极长度小至0.2 µm,支持在毫米波频段工作。 在许多高频应用以及所有低频应用(除对成本最为敏感的应用之外)中,基于GaN的器件已经在很大程度上取代了砷化镓(GaAs)和硅横向扩散金属氧化物半导体(LDMOS)器件。 RF功率放大器设计人员关注GaN器件,因为它们支持非常高的工作电压(比GaAs高三到五倍),并且每单位FET栅极宽度容许的电流大致是GaAs器件的两倍。 这些特性对PA设计人员有重要意义,意味着在给定输出功率水平可以支持更高的负载阻抗。 以前基于GaAs或LDMOS的设计的输出阻抗常常极其低(相对于50 Ω或75 Ω的典型系统阻抗而言)。 低器件阻抗会限制可实现的带宽,也就是说,随着放大器件与其负载之间的阻抗转换比要求提高,元件数和插入损耗也会增加。 由于这种高阻抗,此类器件的早期使用者在某些情况下仅将一个器件安装在不匹配的测试夹具中,施加直流偏置,并用RF/微波测试信号驱动该器件,便取得了部分成果。由于这些工作特性及其异常高的可靠性,GaN器件也适用于高可靠性空间应用。 多家器件供应商在225°C或更高的结温下进行了寿命测试,结果表明单个器件的平均失效前时间(MTTF)超过一百万小时。 如此高的可靠性主要是因为GaN具有很高的带隙值(GaN为3.4,GaAs为1.4), 这使得它特别适合高可靠性应用。扩大GaN在高功率应用中的使用的主要障碍是其制造成本相对较高,通常比GaAs高出两到三倍,比Si LDMOS器件高出五到七倍。 这阻碍了它在无线基础设施和消费者手持设备等成本敏感型应用中的使用。 现在有了硅上氮化镓工艺,虽然存在上面提到的性能问题,但这种工艺生产的器件可能最适合成本敏感型应用。 在不久的将来,随着GaN器件制造转向更大尺寸的晶圆(直径150 mm及更大,目前有多家领先的GaN器件代工厂正在开发),成本有望降低50%左右。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !