随着物联网技术的迅速发展和日益成熟,超低功耗的无线传感器已成为物联网的重要组成单元。无线传感器网络通过将大量的传感器节点部署在监测区域内,使用无线电通信方式形成一个多跳的具有动态拓扑结构的自组织网络系统,目前已得到了广泛应用。但是采用传统供电模式的传感器节点一旦电池耗尽需要重新更换电池,如果传感器节点大量分布,人工更换电池所需的工作将不容忽视。随着超低功耗芯片技术的越发成熟,收集周围环境中的无线射频能量提供电能成为一种有效可行的新型能源供应模式。近年来,随着通信技术的迅速发展,环境中充斥着大量的无线电波信号,主要包括移动电话(GSM) 频段和工业通讯(ISM) 频段。未来的很长一段时间内,多种通信网络共存,也为射频能量收集系统提供了丰富的射频资源。无线能量采集技术最重要的部分是接收天线的分析设计,也是国内外相关专家学者关注的热点。微带天线具有低成本,轻重量,易于共形等诸多优点,被广泛的应用于各种通信系统中。但微带天线由于频带较窄又限制了它的实际应用,增加寄生单元或者具有不同形状缝隙的矩形贴片元可以克服微带天线的窄频带特性;目前在高频段上,国内外对缝隙天线进行了大量的研究报道。基本结构的缝隙天线性能良好,但是也存在阻抗带宽窄、只能单频工作等固有缺陷。因此多频/宽带化技术成为缝隙天线研究的一个热点。文献“工作于2.4GHz /5.2GHz 双频段微带缝隙天线的设计”在缝隙天线的基础上通过再加载两个倒u 型槽,实现了2.4/5.2 GHz的双频工作的特性;文献“新型小型化双频缝隙微带天线的设计”在接地板上开了一个F 型的槽并用微带线馈电,通过调节槽的主要尺寸使天线工作在2.4 / 5.8 GHz频段。文献“一种带宽圆形缝隙天线的设计”采用叉子型微带线馈电并在接地板开了一个圆形缝隙天线,通过调整微带线终端和缝隙中心的相对位置以及圆形缝隙的半径来获得最佳匹配,天线工作在 2 GHz时,频带达到了32.5%。但是由于5 GHz频段在周围环境中的信号功率谱密度较低,因此这些天线设计并不适合用于环境无线能量收集。通过对以上文献的分析研究,文中提出一种适用于无线能量收集的小型双频微带馈电缝隙天线。该天线基于叉子型微带馈电缝隙结构,采用电抗加载法,即通过加载微带枝节和槽实现双频段工作特性,以提高天线的工作带宽,在保证性能的同时克服了微带缝隙天线窄带宽的缺陷。并通过仿真分析获得了该缝隙天线工作频率随缝隙尺寸变化的一般规律。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !