×

一种改进FAST-CNN的超新星目标检测方法

消耗积分:0 | 格式:pdf | 大小:3.86 MB | 2021-03-19

分享资料个

  在进行超新星目标检测时,图像背景复杂、目标较小以及正负样本不平衡导致图像对比不明显和特征提取难度大等问题。为此,从数据合成、特征提取网络优化等方面对 Faster r-CNN算法进行改进,提出一种超新星目标检测方法。将每组图像进行合成以提高图像的对比度。针对特征提取难度大的问题,使用深度残差网络提取合成图像的特征,并将顶层特征依次与低层特征相融合,构建特征金字塔网络,使每一层网络都具有较强的语义信息。采用在线难例挖掘方法对高损失样本进行训练,以处理正负样本不平衡的问题,从而提高算法的检测性能。实验结果表明,与原始 Faster r-CNN算法相比,该算法的 Score与H值分别提高8.51%和45.52%,且其检测性能与泛化能力均较高。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !