×

一种改进的单激发探测器小目标检测算法

消耗积分:0 | 格式:pdf | 大小:2.43 MB | 2021-05-27

分享资料个

  基于单激发探测器(SSD)的小目标检测算法实时性较差且检测精度较低。为提高小目标检测精度和鲁棒性提出一种结合改进密集网络和二次回归的小目标检测算法。将SSD算法中骨干网络由ⅤGG16替换为特征提取能力更强且速度更快的 Densenet,利用基于区域候选的检测算法中默认框由粗到细筛选的回归思想设计串级SSD网络结构,在区分目标和背景后进行常规目标分类和位置回归,以获取精确的默认框信息并达到小目标检测中正负样本比例均衡。在此基础上,使用特征图尺度变换方法在不增加参数量情况下完成特征图融合,同时通过K- means聚类方法得到默认框的最佳长宽比并重新设置其尺寸。实验结果表明,该算法的检测平均精度均值在 PASCAL VOC2007公共数据集和自制航拍小目标数据集上分别为82.3%和87.6%,较改进前SSD算法分别提升5.1个百分点和9.5个百分点,检测速度达到58 frames/s,可有效实现小目标的实时性检测。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !