×

基于改进的CS与RBF的高速公路交通流预测方法

消耗积分:0 | 格式:pdf | 大小:1.17 MB | 2021-03-31

分享资料个

  在暴雨天气情况下,驾驶人视野受限制容易引发交通事故。为准确预测暴雨天气下的高速公路车流量从而减少事故的发生,提出一种基于改进布谷鸟搜索(CS)算法与径向基函数(RBF)神经网络的高速公路交通流预测方法。采用猴群算法中的猴爬山过程优化布谷鸟位置更新策略,通过识别概率自适应更新策略建立改进的CS-RBF神经网络(CS- RBFNN)交通流预测模型。实验结果表明,相对于改进的GSO- RBFNN模型,改进的 CS-RBFNN模型具有更快的收敛速度和更高的预测精度,其平均绝对百分比误差为8.2%,平均绝对误差为20.14,均方根误差为19.2,且预测准确率高于90%。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !