×

一种用于交通流预测的深度学习框架

消耗积分:0 | 格式:pdf | 大小:1.68 MB | 2021-04-14

分享资料个

  交通流预测作为智能交通系统的一个关键问题,是国内外交通领域的硏究热点。交通流预测的主要挑战在于交通流数据本身具有复杂的时空关联,且易受各种社会事件的影响。针对这些挑战,提出一种用于交通流预测的深度学习框架。一方面,针对道路网络非欧氏的空间关联以及交通流时序数据的时间关联,设计了一种融合图卷积神经网络和循环神经网络的特征抽取子网络;另一方面,针对社会事件对交通流的潜在影响,设计了一种基于卷积神经网络的社会事件特征抽取子网络。最后融合时空关联特征抽取子网络和社会事件特征抽取子网络,实现交通流预测模型。为了验证模型的有效性,文中基于真实交通流数据进行了实验。结果表明,所提模型与传统的预测模型相比具有较髙的准确度,准确度提髙了3%~6%。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !