为提高在负荷波动性较大场景下对异常负荷判别的适应性,提出一种适用于电网异常负荷动态判别的卷积神经网络阈值模型。利用时序历史负荷数据训练卷积神经网络模型进行负荷预测,并根据预测负荷值计算电网未来的状态变量数据,通过该状态变量数据源矩阵的构造,依次构建其窗口矩阵、标准矩阵以及样本协方差矩阵,进而设定基于样本协方差矩阵最大特征值的动态阈值,利用该阈值对当前时刻的最大特征值进行越限判定,实现对电网异常负荷的动态判别。借助 Matlab r2014a和PST软件工具,在IEE50机145母线标准系统中进行仿真测试,结果表明,与传统阈值模型相比,该阈值模型在动态电网中对 MESCM指标的异常判定适应性更强、准确性更高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !