×

一种端到端的密集连接扩张卷积神经网络

消耗积分:0 | 格式:pdf | 大小:3.82 MB | 2021-04-02

分享资料个

  针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提岀了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结枃来増加网络的特征利用窣,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输岀模抉,从而获得更精确的特征信息。实验结果表明,所提岀的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较妤的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !