现有基于生成器的对抗样本生成模型相比基于迭代修改原图的算法可有效降低对抗样本的构造时间,但其生成的对抗样本与原图在感知上具有明显差异,人眼易察觉。该模型旨在增加对抗样本与原图在人眼观察感知上的相似性,并保证攻击成功率。模型将对抗样本生成的过程视为对原图进行图像増强的操作引入生成对抗网络,并改进感知损失函数以增加对抗样本与原图在内容与特征空间上的相似性,采用多分类器损失函数优化训练从而提高攻击效率。实验结果表明,相比其他基于生成器的对抗样本生成模型,该模型有效提高了对抗样本与原图的结构相似性指标,并且攻击成功率未岀现下降。说明在保持攻击成功率的同时,该模型可有效提高人眼观察下对抗样本与原图的相似性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !