×

基于SVDD的车载CAN网络入侵检测方法

消耗积分:0 | 格式:rar | 大小:2.65 MB | 2021-04-28

分享资料个

  随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局堿网络( Controller Area network,CAN)总线协议,在发布时缺少隐私与安全保护机制。因此,为检测网络入侵、保护智能网联汽车安全,文中提出了一种基于支持向量数据描述( SupportⅤ ector Data Description,SVDD)的车载CAN网络入侵检测方法。该方法提取单位时间窗内CAN网络报文D的加权自信息量和⑩的归一化值作为特征信息,并在移动边缘计算服务器处构建并训练sVDD模型,目标车辆基于训练的SVDD模型进行异常特征值识别,从而实现实时的车载CAN网络入侵检测。文中采用韩国高丽大学HCR实验室公开的CAN网络数括集,对所提方法与3种传统的基于信息熵的车载网络入侵检测方法在拒绝服务攻击和伪装攻击检测准确率方面进行了对比与分析。仿真实验结果表明,在少量报文入侵时,所提方法显著提高了入侵检测的准确率。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !