×

工业控制网络入侵检测方法

消耗积分:1 | 格式:rar | 大小:1.11 MB | 2018-03-29

分享资料个

  工控网络异常中存在部分已知通信异常行为和部分未知通信异常行为,白名单方法能够有效地检测规则库内的已知异常行为,但对未知通信异常行为检测率低。为了在充分挖掘有效信息的基础上提升检测率,提出一种结合白名单过滤和神经网络无监督学习算法的入侵检测方法AMPSO-BP,并应用在管理网络与工业网络服务器间的路由器上。首先,利用白名单技术一次过滤不符合白名单规则库的通信行为;其次,通过神经网络无监督离线方式样本训练学习的结果二次过滤白名单信任通信行为中的异常通信。利用神经网络提升在信息不完备情况下的检测率,且根据神经网络检测结果不断完善白名单规则库,提高跨网异常通信检测率;利用自适应变异粒子群优化( AMPSO)算法作为BP神经网络的训练函数,在粒子群优化(PSO)算法基础上加入了自适应变异过程,避免了训练过程中过早陷入局部最优解。实验利用两组数据集训练和测试,实验结果表明,AMPSO-BP与白名单结合的检测方法比PSO-BP与白名单结合检测方法的准确率更高。

工业控制网络入侵检测方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !