×

一种基于随机森林与人工免疫的入侵检测算法

消耗积分:0 | 格式:pdf | 大小:2.34 MB | 2021-03-27

分享资料个

  传统入侵检测方法对 Probe、U2R、R2L等网络入侵攻击类型的检测率较低,存在对入侵行为的误检和漏检。为此,提出一种基于随机森林与人工免疫的入侵检测算法。设计随机抗体森林检测策略,针对小样本薮据集采用克隆选择算法保证抗体的优良性,提高攻击的检测率,通过将识别为入侵行为的抗原注入抗体集,以平衡抗原的检测率和误报率。仿真结果表明,该算法的检测率为94.1%,高于 Probe的93.79%、U2R的91%与R2L的85%,且具有较低的误报率。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !