针对提取图表征用于图分类过程中的结构信息提取过程的问题,提出了一种图卷积神经网络与胶囊网络融合的图分类模型。首先,利用图卷积神经网络处理图中的节点信息,迭代以后得到节点表征,表征中蕴含着该节点的子树结构信息;然后,利用 Weisfeiler-lehman图核算法的思想对节点表征的多维度进行排序,得到多视角的图表征;最后,将多视角的图表征整理成胶囊的形式并输入胶囊网络,使用动态路由算法得到更高层次的分类胶囊,进而进行分类。实验结果表明,所提模型在公共数据集上的分类准确度提升了1%~3%,同时具备更强的结构特征提取能力,在少样本情况下的表现比 DGCNN更加稳定。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !