为了对社交网络平台上发表的言论和信息进行情感分类,基于卷积神经网络和多特征融合,提出一种情感分类方法。结合Twitter自身语言特性和情感字典资源设计语料特征和词典特征,对Twitter文本词向量使用卷积神经网络获得对应的深a词向量特征,将上述3类特征进行特征融合并采用One-Versus-One SVM实现情感极性的分类判别。针对SemEval语料的实验结果表明,该方法取得了较好的情感分类效果,多特征融合能够有效地提高情感分类的准确性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !