随着数据采集技术的发展,人们获取数据的途径呈多样化,所得到的数据往往具有多个视图,从而形成多视图数据。利用多视图数据不同的信息特征,设计相应的多视图学习策略以提高分类器的性能是多视图学习的研究目标。为更好地利用多视图数据,促进降维算法在实际中的应用,对多视图降维算法进行研究。分析多视图数据和多视图学习,在典型相关分析(CCA)的基础上追溯多视图CCA和核CCA,介绍多视图降维算法从两个视图到多个视图以及从线性到非线性的演化过程,总结各种融入判别信息和近邻信息的多视图降维算法,以更好地学习多视图降维算法。在此基础上,对比分析多视图降维算法的特点及存在的问题,并对未来的研究方向进行展望。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !