在多标准协同过滤中,存在稀疏性处理方法单一以及传统粒子群优化(PSO)算法早熟、易陷入局部最优等问题。为此,基于矩阵瑱充及改进PSO算法,提出一种多标准协同过滤模型。采用矩阵填充方法对稀疏数据的缺失部分进行估算,以避免降维方法对原始数据信息造成损失,同时结合髙斯算子快速收敛的优势以及遗传算子对生物进化模拟的有效性对PSO算法进行改进,聚合多标准评分生成TopN推荐列表。实验结果表明,与基于标准PSO算法以及基于遗传算子改进PSO算法的模型相比,该模型的评分预测准确度较优,能为个性化推荐提供有效的支持。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !