×

一种基于嵌入式特征提取的多标记分类算法

消耗积分:0 | 格式:pdf | 大小:0.58 MB | 2021-05-24

分享资料个

  基于单标记分类的降维及特征选择方法难以直接运用到多标记学习中,而将多标记学习问题独立分解为多个单标记学习问题再进行降维会丢失标记的相关性信息。为此,提出一种基于嵌入式特征提取的多标记分类算法,将非负矩阵分解引入到多标记学习过程中,在对原始多标记数据集进行特征提取的同时,减少冗余特征、不相关特征及髙维特征对多标记分类的影响。在4个公开的标准数据集上进行对比实验,结果表明该算法能对数据进行有效降维,在准确度、精度、F度量值等评价指标上相比传统BR、CC、LM算法具有更好的分类性能。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !