海量文本分析是实现大数据理解和价值发现的重要手段,其中文本分类作为自然语言处理的经典问题受到研究者广泛关注,而人工神经网络在文本分析方面的优异表现使其成为目前的主要研究方向。在此背景下,介绍卷积神经网络、时间递归神经网络、结构递归神经网络和预训练模型等主流方法在文本分类中应用的发展历程比较不同模型基于常用数据集的分类效果,表明利用人工神经网络伂构自动获取文本特征,可避免繁杂的人工特征工程,使文本分类效果得到提升。在此基础上,对未来文本分类的研究方向进行展望。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !