不同皮肤病间发病率的差异导致了皮肤病数据类不平衡现象,对使用机器学习方法构建高效、准确的皮肤病诊断模型带来了巨大挑战。提出一种融合生成对抗网络( generative adversarial networks,GAN)和朴素贝叶斯的皮肤病二分类诊断方法:在皮肤病数据集上训练朴素贝叶斯二分类器作为诊断器,创新性地使用GAN为前者生成补充训练样本,使其训练集正负类样本达到平衡。针对皮肤病诊断多分类问题,提出一种融合生成对抗网络和朴素贝叶斯的多分类诊断方法:使用GAN和朴素贝叶斯训练皮肤病单病种二分类器,并结合了词频逆文档频率算法( term frequency- inverse document frequency,TF-IDF),将多个二分类器组合成一个多分类器作为诊断器。与六种诊断方法进行了对比实验,提岀的两种皮肤病诊断方法准确率和召回率均有提升。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !