×

一种利用生成式对抗网络的超分辨率重建算法

消耗积分:0 | 格式:pdf | 大小:2.95 MB | 2021-03-22

分享资料个

针对传统图像超分辨率重建算法存在网络训练困难与生成图像存在伪影的冋题,提岀一种利用生成式对抗网络的超分辨率重建算法。去除生成式对抗网络的批量归一化层降低计算复杂度,将其中的残差块替换为密集残差块构成生成网络,使用ⅴGG19网络作为判别网络的基础框架,以全局平均池化代替全连接层防止过拟合,引入纹理损失函数、感知损失函数、对抗损失函数和内容损失函数构成生成器的总目标函数,利用纹理损失增强局部信息匹配度,采用激活层前的特征信息计算感知损失获取更多细草特征,使用wGAN-GP理论优化网络模型的对抗损失加速收敛,运用内容损失提升图像低频信息的准确性。实验结果表明,该算法重建图像的平均峰值信噪比为27.97dB,平均结构相似性为0777,与 SRGAN和EDSR等算法相比,其在未延长较多运行时间的情况下,重建结果的纹理细节更清晰且亮度信息更准确,更符合视觉感官评价要求。

一种利用生成式对抗网络的超分辨率重建算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !