基于DSP的远程程序更新方法很多[12],但在烧写的时候均要求系统不能断电,否则将造成整个系统软件崩溃,只能人工通过JTAG口调试烧写才能恢复。如何有效提高系统维护的可靠性成为一个重要的问题。本文创新地提出基于多DSP的程序分片、数据分段的高可靠性远程更新软件设计,并列举了多个增强可靠性的应用方法。本文以某型号无线远程监控系统为例,具体描述该设计的实际应用。
1 系统结构
本系统处理数据多,计算量大,又有很强的实时性要求,选用ADI公司的高速处理芯片TigerSharc201s。Flash选用JS28F128,容量为256 Mb。系统设计采用两片ADSP并行的模式。系统结构如图1所示,TS201A为主DSP,TS201B为从DSP。主DSP经Flash采用EPROM加载方式,再通过Link口引导加载从DSP。本处理系统支持多种工作模式,监控中心通过内部协议远程管控处理系统。从DSP实现信号处理计算,把处理计算结果传递给主DSP;主DSP实现管控模块,通过外围芯片FPGA的串口协议发送给无线传输设备,通过CDMA模块用无线网络的形式,发送到监控中心软件。监控中心通过协议对其可实现远程管理,包括数据库文件更新、程序更新和状态模式转换。
图1 系统结构
2 远程更新原理及实现
2.1 设计原理
Flash内部分为256个block,可以擦写任意位置的block段,没有擦写的block数据不会丢失。根据这一特性,把两片DSP软件程序和分段的数据库的烧写位置分开。Flash空间地址分配如图2所示。
图2 Flash空间地址分配示意图
监控中心按照内部协议把数据库或程序文件分包,通过无线网络下发到以TS201为核心的信号处理机。处理机接收完数据后,通过自身的烧写功能,把新数据自动写入Flash中。重新启动后,DSP重载实现远程分片更新程序的功能。程序的初始化设置中,每次会自动读回Flash中的数据,完成更新数据库参数的功能。
为了增加远程更新的可靠性,把两片DSP程序分开位置烧写。由于主DSP只涉及管理控制功能,所以把主DSP程序作为整个系统的“壳”,一般不作更新。用从DSP实现其主要的性能计算,它的加载通过主DSP的Link口引导。这样,大部分的在线维护和算法程序升级通过更新从DSP就能完成。在更新的过程中,主DSP程序不会受影响,增强了系统的可靠性,也不必担心突然掉电会导致系统软件的崩溃。
2.2 基于TS201的远程更新过程
本系统制定内部协议,实现远程更新的指令交互。信号处理机接收指令,按照协议决定远程更新的内容,分为软件更新或者数据库更新。若为软件更新再区分主、从DSP软件更新;若为数据库更新,根据数据库信息决定更新的位置和段数。
本系统的数据库文件为30K×4字节,分为6段。根据无线传输设备的发送能力,把数据按照每包198字节分包,每包包括报头、总包数、包号和校验位等信息,数据协议具体格式如下:
报头:SOH;
报文长度:本包数据的长度,包括报头,固定为198;
总包数:此次程序或者数据库文件分成的总包数;
包号:本包的编号;
数据:需要更新的数据;
校验位:占3个字节,包括1个字节的奇偶校验位、2个字节的CRC校验位。
发送更新文件时,系统采用握手协议。信号处理机每接收到1包数据,将发回馈信息给监控中心,监控中心接收到成功回馈信息后,再发下1包数据。否则将进入等待模式,10 s后自动重发此包数据。若连续重发3次仍然不成功,才放弃此次更新。信号处理机软件机制和监控中心一样,发送回馈后进入等待模式,10 s后自动重新发送回馈信息,最多重发3次,才放弃更新,重新回到工作状态,直到接收到新的下发指令。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉