引言
太阳能作为一种无污染的能源,有关其利用的研究一直是人们研究的热点。为了提高太阳能的电能转化效率,光伏并网逆变器的研究是光伏利用的重点。对于光伏并网逆变器,其拓扑结构按照变压器可以分为:
高频变压器型,工频变压器型和无变压器型。高频变压器体积小,重量轻,效率高,但是控制较为复杂;工频变压器体积大,重量重,结构简单;为了能够提高光伏并网系统的效率和降低成本,在没有特殊要求的时候可以采用无变压器型的拓扑结构。但是,由于没有变压器,输入输出没有电气隔离,光伏模块的串并联构成的光伏阵列对地的寄生电容变大,而且该电容受外界环境影响较大,由此产生的共模电流将会很大,对于漏电流的研究,现已有多种解决方案:当全桥逆变器采用单极性调制方式时,存在一开关频率脉动的共模电压,而采用双极性调制方式时,共模电压不变,其幅度等于母线电压的一半;在半桥逆变器中,对地寄生电容电压亦被输入分压大电容钳位在母线电压的一半,基本保持不变。这些都是基于桥式电路解决漏电流的方法,近年来出现了一种双Buck逆变器结构,这种逆变器具有无桥臂直通,体二极管不工作,双极性工作等突出特点,因而应用广泛。本文提出一种新型的三电平双Buck逆变器的方案,并置定相应的控制策略实现最大功率点的跟踪和并网控制。
三电平双Buck逆变器的总体方案
如图1所示,为双Buck逆变器的电路拓扑结构图,双Buck逆变器采用的是半周期工作模式,当输出电流在正半周时,功率管S1、续流二极管D1、滤波电感L1和滤波电容Cf共同构成了Buck1电路。当输出电流为负半周时,功率管S2、续流二极管D2、滤波电感L2和滤波电容Cf共同组成Buck2电路,两条Buck电路不同时工作。相比于传统的桥式逆变电路,电路无桥臂直通的可能,体二极管也不用参与工作过程。但是,这种情况下,功率管S1和S2在工作的半个周期内所承受的电压时直流母线电压Ud的两倍。由于其桥臂本身输出的电压波形依然是双极性的,所以其谐波含量依旧很大。
通过在双Buck逆变器拓扑结构上进行优化,用两个功率管和快恢复型二极管的组合开关电路(即S1&S3&D3和S4&S2&D4)替代原先的桥臂上的功率管。得到如图2所示的新型三电平双Buck逆变拓扑结构。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉