提出一种利用极限学习机ELM的数据可视化方法,该方法利用多维尺度分析MDS、Pearson相关性、Spearman相关性代替常用的均方误差MSE实现高维数据投影到2维平面的数据可视化。将所提方法与近期流行的随机邻域嵌入SNE及其改进的t-SNE方法对比,并通过局部连续元准则I.CMC进行质量评测。结果表明:该方法的数据可视化结果及计算性能明显优于SNE及t-SNE方法;而在提出的三种学习规则中,基于MDS的学习规则效果最好。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !